If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+25x-12.5=0
a = 20; b = 25; c = -12.5;
Δ = b2-4ac
Δ = 252-4·20·(-12.5)
Δ = 1625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1625}=\sqrt{25*65}=\sqrt{25}*\sqrt{65}=5\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-5\sqrt{65}}{2*20}=\frac{-25-5\sqrt{65}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+5\sqrt{65}}{2*20}=\frac{-25+5\sqrt{65}}{40} $
| -6=-3(2t-4) | | 16=6+-d | | 9÷3(6×4÷8)=x | | 2r+-1=3 | | F(x)=-3(x-1) | | 5b-12=-5 | | 9x/3=9 | | -2=+3-s | | 4a^2+7=0 | | 14.09(x-0)=25-x | | -7+2(4+y)=2y+1 | | x/7+5=40 | | .33(4t-7)=t+7÷6 | | -7+2(4+y)=2y=1 | | -2x-7=1x | | -3=0+t | | 10/9=20/3x | | 5/8=y+4 | | P^2+q^2=96 | | 5x^2-140x-300=0 | | -3/4+v=1/2 | | 5x^2-14x-60=0 | | 2/3x+1/6=3/4x+12 | | 39(p+30)=3198 | | 7(5h-3)=-22 | | h-+4=+15 | | -11=7-7-x | | w+1/4=-2/5 | | 4(x+16)=740 | | 5/4m+1+1=15/2 | | -4=x-2/9 | | +8-w=-4 |